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Gonor [1] has considered a nonviscous hypersonic flow around a circular
cone with an angle of attack a. He sought a solution in the form of a
power series in € = (y — 1)/(y + 1) (where y is the adiabatic index),
and obtained the first term of the expansion in closed parametric form.
In the present work it is shown that near the cone surface there exists a
"vortex layer" in which the solution can not be approximated by means of
a partial sum of the power series in €. Because of this, the theory of
Gonor does not offer the possibility of determining the velocity compo-
nents on the surface of the cone. Here it is shown how the velocity com-
ponents can be found on the cone surface with a precision of O(e) by
starting out with Gonor’s solution.

1. Let us consider a stationary flow around a circular cone with semi-
vertex angle Gk. The flow is that of a nonviscous homogeneous gas. It
has a hypersonic velocity with an angle of attack o in a spherical system
of coordinates r, 8, ¢ whose axis coincides with the cone axis (see
figure).

Let us denote by u, v and w the components of the velocity vector of
the gas particles in the directions of increasing r, 6 and @; p and p
will denote pressure and density, respectively. Quantities which are re-
lated to the undisturbed flow we shall mark with a right superscript o
(Vo is the velocity, M° is the Mach number of the undisturbed flow).

We shall treat this problem in the frame of the theory of conical
flow, when u, v, w, p and p do not depend on r. The equations of con-
tinuity, momentum, and energy can be expressed in this case in the
following form:
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2pu sin 6 - (pv sin B)y + (pw), =0 (1.1)

vug+wese by, — 2 —uw? =0 (1.2)

2
vvg + wese bvg, + — p°+uv~~——-—o 1.3

]

ul + o2 4wt TP T
5 +7—1F=—"+ T
4
”(pv )9+wcsc@(?~)w=0 (1.5)

The subscripts 0 and ¢ indicate differentiation, y is the adiabatic
index; the gas is assumed to be an ideal gas. After the eliminatiomn of p,
Equation (1.1) can be represented in the form (a is the velocity of
sound):

(a* — v?) sin Bvg = (WP — a?) we + vw (sin Quwe + V) + ¥ (V* + w? — 247) sin 8 —a’s sin 0

Loty — W)) (1.6)

(a’ = g% —

2. In solving this problem, Gonor [ﬂ used G.G, Chernyi’s method of
expanding the solution in powers of € = (y — 1)/(y + 1) (under the con-
dition that 5 = 1/M° (y — 1) be of the order of 1 or lower when & - 0),

In the region between the cone surface and the shock wave, the solu-~
tion was sought in the form

Uu=up+t8Ust-..., v=8vp+E0 4 ..., w=wew+... (2.1)
1
p=ptep+..,p="7pP+p+.

The chosen independent variables were ¢, g, where y = const .on the
curves of coastant entropy (0 was expressed also in the form 8 = 8, +
€6, + & 6 + ...). It is expedient, for what follows, to introduce vari-
abies of the "boundary layer" directly into the physical space:

$=(0—0)e, p=0¢ 2.2)

3. We shall show that on the cone surface the velocity components u
and w, determined by (2.1), do not satisfy Equation (1.2), which for
g = ek can be written in the form

W o= "S‘i‘é"é‘;’ u"

Substituting into this the values given in (2.1), we obtain
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i 4
w¢=§5~0‘;uw, w;::-sETkum,... 3.1)

In Gonor’s theory [1], », = 0, when 8= Bk, and u, # 0, and, hence,
(3.1) is not satisfied. The inapplicability of the expansion (2.1) in
the neighborhood of the cone is also revealed by the fact that in Gomor's
solution the surface of the cone is not a surface of constant entropy.

4. In order to find u and w» when € = Sk, we use the method by which
Willett [2] determined » and » on the cone in a supersonic flow., The sur-
face of the cone is a stream surface which begins on the shock wave when
¢ = w. In view of this, the entropy on the cone surface must have the
same value as it has on the shock wave when ¢ = v (see, for example, [3])

I1f one sets § (for the shock wave with ¢ = m) equal to 6* = Ok +
ed* +..., considers the conditions at the discontinuity when ¢ = 7,
takes account of the fact that p/pY = const on the considered flow sur-
face, and eliminates p from Bernoulli’s equation (1.4), then one obtains,
with 8 = 8,, the equation

o1 L
S RN - e——

28 o i v—1
X1+ marer] -4+ (8= gep=y R

Let us assume that on the cone surface, u, » and p can he expressed
in the form

u=ut e ..., w=wrtewy* ..., p=p=tep”+... (4.2)
Substituting (4.2) and 8* = 9& + ed*+ ... into (4.1), expanding the

result in powers of €, and equating coefficients of like powers of e,

we obtain
ug"® - wg™? = V% cos* (a 4 6,) (4.3)
wowr + uekur® + V°? {o* cos (- 8,) sin (2 +8,) + (5.4)
. P
+ [sin? (2 4 6,) 4 28] In fmgﬁ}

Substituting (4.2) into (1.2) with § = ek, we obtain in an analogous
manner
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1

b
we* = m uw" s wyX = m 7% (4.5)

Substitution of (4.5) into (4.3) leads to the differential equation
{(with 6 = 8,

1
o™+ GG, Yae = V7 cos'(a +0)) 4.0

The unique solution of (4.6) satisfying the condition

1
wo"=muw"z0 for p=0,n

will be
u* =V°cos(a-0,), w* =0 4.7

From (4.4), (4.5) and (4.7) we now obtain

sin? (a 4 0,) - 28 p°V°%sin® (o + 0,)

cos (a - 0,) n DPo*

LSt (4 6,) +28 po
sin 8, cos{a+406,) py*

u* =y [—- 0% sin (a + 6,) + } (4.8)

!I,‘|x = —

From (4.7) it follows that the quantity ¥y, with 8 = 6&, is given
correctly by Gonor’s solution, but this is not the case for ug.

5. Let us investigate the behavior of the solution near the cone sur-
face. From (4.7), (4.8) and (1.6) it follows that when 6 = Ok

vy = ~— 2ug” 4 O ()
Therefore, in the neighborhood of € = Gk

v=—2u™(0—6,)+ O[e(0—0,)] +0 (0—0,)=—2Vcos(a+8)ed+o(ed) (51)

while » can be expressed in the form
w = wy' (¥, @)+ euy (@) -+ o (g) (5.2)

where wo'(o, ®) = 0. (If Gonor’s theory determines w, correctly not only
when © = 8, but also in some neighborhood of & = 8, then wo' = wy.)

We now introduce into our discussion the quantity

4

§ = o

Substituting (5.1) and (5.2) into (1,5), dropping the small terms,
and passing from © to ¥, we obtain an equation for S
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U8y + feg (@) + R (B ¢)] S, =0 5.3)
w* () ]
(M@=*“ﬂwmﬁ;rqy hw.msu)

The general solution (5.3) has the structure

s “—f{ 4% exp ( - \ dg )Ql (5.4)

Here f is an arbitrary function while the function ¢ satisfies the
equation

00y (68 -+ 1) Qy— = @ =0 (5.5)

with the boundary condition O =0, @ = 1.

From (5.4) and (5.5) it is clear that for small values of &, the
function S can not be approximated by a finite partial sum of a power
series in €, because such an approximation would not be valid for Uf, or
for Q.

For example, every partial sum of the series

1
B =™t O L (ein®)2 4. ..

becomes infinite when ¢ = 0, while O4° = 0 when & = 0.

The possibility of expanding S as a convergent series in € is related
to the possibility of expanding ¥° and Q in such series. For +° this
is possible if & = O(e), because & ln ¢ is small for small e; the be-
havior of Q is determined by the function h.

If one assumes that ”0’ = wy, then h~d®, and with ¢ = 0O(g), the
function Q can be expressed as the series

Q=Q.--eQy-+e0:-] ...

For S we have the following expansion in powers of g:

S=S0+SS;+...=f{exp(-—- gd_;p_) Qg}+80(lnﬁ)+.., (5.8)

A study of the equations of the system (1.1) to (1.5) reveals that
there are no obstacles to the expansion of the other solution quantities
in power series of ¢ when ® = O(e). One may, therefore, expect the ex-
pansion (2.1) to represent the solution outside the vortex layer of
thickness ¢ = O(g), and one may assume that, when & = O(e), S can be ex-
pressed in the form
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P A (m__pe__m
S=r " ‘H(po po? ~§TZI”P°)+"':S°+SS*+‘-~ G.7

From (5.6) and (5.7) we obtain

d i
i exp [ — e Qo = 2 when ¢ =0, pr~In® when® -0
g Po

One finds also that
uy~n® when 8 -0

If one passes from § to ¥.in the equations (1.1) to (1.5), substitutes
in them the expansion (2.1), and obtains the equations for uy, vy, wy,
p; and P;, then one can establish that if »; # 0 when ¢ = 0, p; ~ log 9,
and s, ~ log ¢ when ¢ —~ 0. This confirms the above assertion.

From Equation (1.3) one can see that pg = O(e) in the vortex layer.
Therefore, the pressure change through the vortex layer of thickness
06-6,¢ 9 = 0(52) 18 of the order 0(ed).

6. From the qualitative analysis of Section 5, and from the similar-
ity between the structures of the vortex layers in supersonic and hyper-
sonic flows (see, for example, {4}),one can expect that the expansion
(2.1) gives the correct values of p and » to within an error of order
O(e), and that this expamsion represents the solution outside a vortex
layer of thickness § — 8, = O(e?).

If one accepts what has been said above, then Pox = Py when 6 = Gh.
and Formulas (4.2), (4.7) and (4.8) detersine u and » on the surface of
the cone with & precision of O(e), whereby O°* is given by the formumlsa

sin® @, cos (¢ + 0, ) [sin? (x + 6,) + 28]
sin* asin (2 - 6, )

(6.1)

sina ) sina _ sina
x { i+ sin 8, cos (a4 8,) n 1 +sin8& cos {a 4 8,) sin 8, cos (2 + 8,)

This formula can be obtained from Gonor’s [1] results by elementary
means but cumbersome computations. When o - 0, the Formulas (4.7), (4.8)
and (8.1) go over into well-known formulas for a cone with o = 0 (see,
for example, [5]). We note that the vortex layer exists also near the
surface of any conical body. This is related to the fact that «, becomes
zero at the surface of a body [8]. The velocity components on the sur-
face of the body can be computed in an analogous way.

Not until after this paper had been written did the author become
acquainted with a recent article of Cheng (7] where analogous results
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are given, but only for the cases of small and intermediate angles of
attack (Cheng expanded the solution in power series of ¢ and o = sin o/
sin Ok and restricted himself to terms of order 0(02).
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